1. 400-6300-966

  2. 微信
  3. 微博
  4. QQ群
  5. 帮助中心
400-6300-966
QQ群号:1103448799

2022考研高数章节知识点梳理(第3章)

来源:中公考研 | 2021-01-09 16:41:32

专业课资料领取

预约申请

2022考研的考生现在已经进入基础备考阶段啦!一个良好的起跑点对于后期的复习备考至关重要,考研数学栏目为各位考生提供相关考研备战常识与资料,希望能对各位2022考研的考生有所帮助,一起来看哦。

2022考研数学

中值定理与导数的应用

1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a

2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点ξ(a

3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F’(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。

4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。

5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f’(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)

如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

定理(函数取得极值的必要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f’(x)恒为正;当x去x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f’(x)恒为负;当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f’(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。

定理(函数取得极值的第二种充分条件)设函数f(x)在x0处具有二阶导数且f’(x0)=0,f’’(x0)≠0那么:(1)当f’’(x0)0时,函数f(x)在x0处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。

7、函数的凹凸性及其判定设f(x)在区间Ix上连续,如果对任意两点x1,x2恒有f[(x1+x2)/2][f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凸的。

定理设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f’’(x)>0,则f(x)在闭区间[a,b]上的图形是凹的;(2)若在(a,b)内f’’(x)

判断曲线拐点(凹凸分界点)的步骤(1)求出f’’(x);(2)令f’’(x)=0,解出这方程在区间(a,b)内的实根;(3)对于(2)中解出的每一个实根x0,检查f’’(x)在x0左右两侧邻近的符号,如果f’’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。

以上是中公考研为考生整理的"2022考研高数章节知识点梳理(第3章)"的相关内容,希望对大家有帮助,更多考研数学复习信息尽在中公考研数学频道!

推荐阅读>>>

2022考研数学:备考过程中要分清主次!

2022考研数学基础复习规划

2022考研数学复习5个基本问题

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。

【责任编辑:王昭】

猜你需要的课程

  • 热门推荐
  • 专业课
  • 政治
  • 英语
  • 数学
中级金融硕士进阶班

课时:118

课程内容:政治+英语二+数学三+金融硕士

¥2499

初级金融硕士进阶班

课时:86

课程内容:政治+英语二+数学三+金融硕士

¥2499

畅学OAO金融-C班

课时:1094

课程内容:考研政治+考研英语一+考研数学三+金融硕士

¥39800

畅学OAO金融-B班

课时:1094

课程内容:强化做题方法,总结规律,培养答题规范

¥39800

考研政治专属班

课时:136

课程内容:2022考研“在职人”考研政治

¥1343

政治直播VIP班

课时:128

课程内容:2022考研政治

¥2880

英语二直播VIP班

课时:178

课程内容:2022英语二

¥2880

考研英语二专属班

课时:178

课程内容:2022考研英语二

¥1343

数学直播VIP班

课时:174

课程内容:考研数学一+考研数学二+考研数学三

¥2880

政英二数联报班

课时:488

课程内容:考研政治+考研英语二++考研数学三

限时¥3519

考研政治直播课

课时:88

课程内容:2021考研“在职人”政治直播VIP班(新大纲)

¥2880

考研政治专属班

课时:154

课程内容:2021考研“在职人”政治专属班(新大纲)

¥1580


  • 面授课程
  • 直播课

热点关注


精彩活动

招考信息

复习备考

中公简介 | 联系我们 | 支付方式 | 加入中公 | 版权声明 | 网站地图